The Success of Stack Exchange: Crowdsourcing + Reputation Systems

May 3, 2012

You’ve heard me say it before… Crowdsourced websites like StackOverflow and Wikipedia are changing the world.  Everyone is familiar with Wikipedia, but most people still haven’t heard about the StackExchange brand question and answer sites.  If you look into their success, I think you’ll begin to see how the combination of crowdsourcing and online reputation systems is going to revolutionize academic publishing and peer-review.

Do you know what’s happened to computer programming since the founding of StackOverflow, the first StackExchange question and answer site?  It has become a key part of every programmer’s continuing education, and for many it is such an essential tool that they can’t imagine working a single day without it.

StackOverflow began in 2008, and since then more than 1 million people have created accounts, more than 3 million questions have been asked, and more than 6 million answers provided (see Wikipedia entry).  Capitalizing on that success, StackExchange, the company which started StackOverflow, has begun a rapid expansion into other fields where people have questions.  Since most of my readers do more statistics than programming, you might especially appreciate the Stack Exchange for statistics (aka CrossValidated).  You can start exploring at my profile on the site or check out this interesting discussion of machine learning and statistics.

How do the Stack Exchange sites work?

The four most common forms of participation are question asking, question answering, commenting, and voting/scoring.  Experts are motivated to answer questions because they enjoy helping, and because good answers increase their prominently advertised reputation score.  Indeed, each question, answer, and comment someone makes be voted up or down by anyone with a certain minimum reputation score.  Questions/answers/comments each have a score next to them, corresponding to their net-positive votes.  Users have an overall reputation score.  Answers earn their author 10 points per up-vote, questions earn 5, and comments earn 2.  As users gain reputation, they earn administrative privileges, and more importantly, respect in the community.  Administrative privileges include the ability to edit, tag, or even delete other people’s responses.  These and other administrative contributions also earn reputation, but most reputation is earned through questions and answers.  Users also earn badges, which focuses attention on the different types of contributions.
Crowdsourcing is based on the idea that knowledge is diffuse, but web technology makes it much easier to harvest distributed knowledge.  A voting and reputation system isn’t necessary for all forms of crowdsourcing, but as the web matures, we’re seeing voting and reputation systems being applied in more and more places with amazing results.
To name a handful the top of my head:
  • A couple of my friends are involved in a startup called ScholasticaHQ which is facilitating peer-review for academic journals, and also offers social networking and question and answer features.
  • The stats.stackexchange.com has an open-source competitor in http://metaoptimize.com/qa/ which works quite similarly.  Their open-source software can and is being applied to other topics.
  • http://www.reddit.com is a popular news story sharing and discussion site where users vote on stories and comments.
  • http://www.quora.com/ is another general-purpose question and answer site.

It isn’t quite as explicit, but internet giants like google and facebook are also based on the idea of rating and reputation.

A growing number of academics blog, and people have been discussing how people could get academic credit for blogging.  People like John Ioannidis are calling attention to how difficult it is to interpret the a scientific literature because of publication bias and other problems.  Of course thoughtful individuals have other concerns about academic publishing.  Many of these concerns will be addressed soon, with the rise of crowdsourcing and online reputation systems.

Advertisements

standards in publishing

November 24, 2009

In the comments on a previous post, dadakim raises a pertinent question about publishing practices that hasn’t (yet?) been adopted in sociology (other than by SMR*, as far as i know). I re-raise it here in case you missed it because i’d be interested in reader reactions to the idea.

But the motivation for this post was actually an unrelated publishing issue has been bugging me for a while. Why is it that news articles that mention scientific research don’t have to detail their sources? This is one practice i’ve never understood. I get elated when i see articles that actually go ahead and source the original materials, which is sad, since i think it should be SOP.

*See the last paragraph of the guidelines.